Fraction to Decimal Calculator

Convert fractions to decimals step by step

The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{1100}{16}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{6}&\phantom{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\16&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&1&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$16$$$'s are in $$$1$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$1-16 \cdot 0 = 1 - 0= 1$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Brown}{0}&\phantom{0}&\phantom{6}&\phantom{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\\color{Magenta}{16}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Brown}{1}& 1 \downarrow&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$16$$$'s are in $$$11$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$11-16 \cdot 0 = 11 - 0= 11$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{DarkMagenta}{0}&\phantom{6}&\phantom{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\\color{Magenta}{16}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1& 0 \downarrow&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkMagenta}{1}&\color{DarkMagenta}{1}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$16$$$'s are in $$$110$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$110-16 \cdot 6 = 110 - 96= 14$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{DarkBlue}{6}&\phantom{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\\color{Magenta}{16}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&0& 0 \downarrow&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{DarkBlue}{1}&\color{DarkBlue}{1}&\color{DarkBlue}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&9&6&\phantom{.}\\\hline\phantom{lll}&1&4&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$16$$$'s are in $$$140$$$?

The answer is $$$8$$$.

Write down $$$8$$$ in the upper part of the table.

Now, $$$140-16 \cdot 8 = 140 - 128= 12$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&6&\color{Purple}{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\\color{Magenta}{16}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&0&0&.& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&9&6&\phantom{.}\\\hline\phantom{lll}&\color{Purple}{1}&\color{Purple}{4}&\color{Purple}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&2&8&\phantom{.}\\\hline\phantom{lll}&&1&2&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$16$$$'s are in $$$120$$$?

The answer is $$$7$$$.

Write down $$$7$$$ in the upper part of the table.

Now, $$$120-16 \cdot 7 = 120 - 112= 8$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&6&8&.&\color{DarkCyan}{7}&\phantom{5}\end{array}&\\\color{Magenta}{16}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&0&0&.&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&9&6&\phantom{.}\\\hline\phantom{lll}&1&4&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&2&8&\phantom{.}\\\hline\phantom{lll}&&\color{DarkCyan}{1}&\color{DarkCyan}{2}&\phantom{.}&\color{DarkCyan}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&1&\phantom{.}&2\\\hline\phantom{lll}&&&&&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 6

How many $$$16$$$'s are in $$$80$$$?

The answer is $$$5$$$.

Write down $$$5$$$ in the upper part of the table.

Now, $$$80-16 \cdot 5 = 80 - 80= 0$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&6&8&.&7&\color{Chartreuse}{5}\end{array}&\\\color{Magenta}{16}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&1&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&9&6&\phantom{.}\\\hline\phantom{lll}&1&4&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&2&8&\phantom{.}\\\hline\phantom{lll}&&1&2&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&1&\phantom{.}&2\\\hline\phantom{lll}&&&&&\color{Chartreuse}{8}&\color{Chartreuse}{0}\\&&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&8&0\\\hline\phantom{lll}&&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Since the remainder is $$$0$$$, then we are done.

Therefore, $$$\frac{1100}{16}=68.75$$$

Answer: $$$\frac{1100}{16}=68.75$$$


Please try a new game Rotatly