Fraction to Decimal Calculator

Convert fractions to decimals step by step

The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{1300}{15}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{8}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\15&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&3&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$15$$$'s are in $$$1$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$1-15 \cdot 0 = 1 - 0= 1$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{Fuchsia}{0}&\phantom{0}&\phantom{8}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{Fuchsia}{1}& 3 \downarrow&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$15$$$'s are in $$$13$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$13-15 \cdot 0 = 13 - 0= 13$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{Chocolate}{0}&\phantom{8}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&3& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Chocolate}{1}&\color{Chocolate}{3}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$15$$$'s are in $$$130$$$?

The answer is $$$8$$$.

Write down $$$8$$$ in the upper part of the table.

Now, $$$130-15 \cdot 8 = 130 - 120= 10$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&\color{Purple}{8}&\phantom{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&3&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{1}&\color{Purple}{3}&\color{Purple}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$15$$$'s are in $$$100$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$100-15 \cdot 6 = 100 - 90= 10$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&\color{OrangeRed}{6}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&3&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&0&\phantom{.}\\\hline\phantom{lll}&\color{OrangeRed}{1}&\color{OrangeRed}{0}&\color{OrangeRed}{0}&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$15$$$'s are in $$$100$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$100-15 \cdot 6 = 100 - 90= 10$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&6&.&\color{DarkMagenta}{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&3&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}\\\hline\phantom{lll}&&\color{DarkMagenta}{1}&\color{DarkMagenta}{0}&\phantom{.}&\color{DarkMagenta}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 6

How many $$$15$$$'s are in $$$100$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$100-15 \cdot 6 = 100 - 90= 10$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&6&.&6&\color{Blue}{6}&\phantom{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&3&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&0\\\hline\phantom{lll}&&&\color{Blue}{1}&\phantom{.}&\color{Blue}{0}&\color{Blue}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&0\\\hline\phantom{lll}&&&&&1&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 7

How many $$$15$$$'s are in $$$100$$$?

The answer is $$$6$$$.

Write down $$$6$$$ in the upper part of the table.

Now, $$$100-15 \cdot 6 = 100 - 90= 10$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&6&.&6&6&\color{GoldenRod}{6}\end{array}&\\\color{Magenta}{15}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&3&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&3&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&3&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&2&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{3}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&9&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&0\\\hline\phantom{lll}&&&1&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&9&\phantom{.}&0\\\hline\phantom{lll}&&&&&\color{GoldenRod}{1}&\color{GoldenRod}{0}&\color{GoldenRod}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&9&0\\\hline\phantom{lll}&&&&&&1&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1300}{15}=86.6 \overline{6}$$$

Answer: $$$\frac{1300}{15}=86.6\overline{6}$$$


Please try a new game Rotatly