Fraction to Decimal Calculator

Convert fractions to decimals step by step

The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{600}{11}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{5}&\phantom{4}&\phantom{.}&\phantom{5}&\phantom{4}&\phantom{5}&\phantom{4}\end{array}&\\11&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}6&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$11$$$'s are in $$$6$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$6-11 \cdot 0 = 6 - 0= 6$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{DarkCyan}{0}&\phantom{5}&\phantom{4}&\phantom{.}&\phantom{5}&\phantom{4}&\phantom{5}&\phantom{4}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{DarkCyan}{6}& 0 \downarrow&0&.&0&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$11$$$'s are in $$$60$$$?

The answer is $$$5$$$.

Write down $$$5$$$ in the upper part of the table.

Now, $$$60-11 \cdot 5 = 60 - 55= 5$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{DeepPink}{5}&\phantom{4}&\phantom{.}&\phantom{5}&\phantom{4}&\phantom{5}&\phantom{4}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}6&0& 0 \downarrow&.&0&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DeepPink}{6}&\color{DeepPink}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&5&\phantom{.}\\\hline\phantom{lll}&5&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$11$$$'s are in $$$50$$$?

The answer is $$$4$$$.

Write down $$$4$$$ in the upper part of the table.

Now, $$$50-11 \cdot 4 = 50 - 44= 6$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&5&\color{BlueViolet}{4}&\phantom{.}&\phantom{5}&\phantom{4}&\phantom{5}&\phantom{4}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}6&0&0&.& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&5&\phantom{.}\\\hline\phantom{lll}&\color{BlueViolet}{5}&\color{BlueViolet}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&4&4&\phantom{.}\\\hline\phantom{lll}&&6&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$11$$$'s are in $$$60$$$?

The answer is $$$5$$$.

Write down $$$5$$$ in the upper part of the table.

Now, $$$60-11 \cdot 5 = 60 - 55= 5$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&5&4&.&\color{Chocolate}{5}&\phantom{4}&\phantom{5}&\phantom{4}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}6&0&0&.&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&5&\phantom{.}\\\hline\phantom{lll}&5&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&4&4&\phantom{.}\\\hline\phantom{lll}&&\color{Chocolate}{6}&\phantom{.}&\color{Chocolate}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&5&\phantom{.}&5\\\hline\phantom{lll}&&&&5&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$11$$$'s are in $$$50$$$?

The answer is $$$4$$$.

Write down $$$4$$$ in the upper part of the table.

Now, $$$50-11 \cdot 4 = 50 - 44= 6$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&5&4&.&5&\color{Purple}{4}&\phantom{5}&\phantom{4}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}6&0&0&.&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&5&\phantom{.}\\\hline\phantom{lll}&5&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&4&4&\phantom{.}\\\hline\phantom{lll}&&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&5&\phantom{.}&5\\\hline\phantom{lll}&&&&\color{Purple}{5}&\color{Purple}{0}\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&4&4\\\hline\phantom{lll}&&&&&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 6

How many $$$11$$$'s are in $$$60$$$?

The answer is $$$5$$$.

Write down $$$5$$$ in the upper part of the table.

Now, $$$60-11 \cdot 5 = 60 - 55= 5$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&5&4&.&5&4&\color{Peru}{5}&\phantom{4}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}6&0&0&.&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&5&\phantom{.}\\\hline\phantom{lll}&5&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&4&4&\phantom{.}\\\hline\phantom{lll}&&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&5&\phantom{.}&5\\\hline\phantom{lll}&&&&5&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&4&4\\\hline\phantom{lll}&&&&&\color{Peru}{6}&\color{Peru}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&5&5\\\hline\phantom{lll}&&&&&&5&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 7

How many $$$11$$$'s are in $$$50$$$?

The answer is $$$4$$$.

Write down $$$4$$$ in the upper part of the table.

Now, $$$50-11 \cdot 4 = 50 - 44= 6$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&5&4&.&5&4&5&\color{Blue}{4}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}6&0&0&.&0&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}6&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&5&\phantom{.}\\\hline\phantom{lll}&5&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&4&4&\phantom{.}\\\hline\phantom{lll}&&6&\phantom{.}&0\\&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&5&\phantom{.}&5\\\hline\phantom{lll}&&&&5&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&4&4\\\hline\phantom{lll}&&&&&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&5&5\\\hline\phantom{lll}&&&&&&\color{Blue}{5}&\color{Blue}{0}\\&&&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&4\\\hline\phantom{lll}&&&&&&&6\end{array}&\begin{array}{c}\end{array}\end{array}$$$

As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{600}{11}=54. \overline{54}$$$

Answer: $$$\frac{600}{11}=54.\overline{54}$$$


Please try a new game Rotatly