Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{1000}{11}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{9}&\phantom{0}&\phantom{.}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\11&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&0&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$11$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-11 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{Peru}{0}&\phantom{0}&\phantom{9}&\phantom{0}&\phantom{.}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{Peru}{1}& 0 \downarrow&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$11$$$'s are in $$$10$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$10-11 \cdot 0 = 10 - 0= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{DarkMagenta}{0}&\phantom{9}&\phantom{0}&\phantom{.}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&0& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{DarkMagenta}{1}&\color{DarkMagenta}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$11$$$'s are in $$$100$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$100-11 \cdot 9 = 100 - 99= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&\color{Purple}{9}&\phantom{0}&\phantom{.}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&0&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{1}&\color{Purple}{0}&\color{Purple}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&9&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$11$$$'s are in $$$10$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$10-11 \cdot 0 = 10 - 0= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&9&\color{Fuchsia}{0}&\phantom{.}&\phantom{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&0&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&9&\phantom{.}\\\hline\phantom{lll}&&\color{Fuchsia}{1}&\color{Fuchsia}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$11$$$'s are in $$$100$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$100-11 \cdot 9 = 100 - 99= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&9&0&.&\color{BlueViolet}{9}&\phantom{0}&\phantom{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&0&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&9&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&\color{BlueViolet}{1}&\color{BlueViolet}{0}&\phantom{.}&\color{BlueViolet}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&9\\\hline\phantom{lll}&&&&&1&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$11$$$'s are in $$$10$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$10-11 \cdot 0 = 10 - 0= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&9&0&.&9&\color{OrangeRed}{0}&\phantom{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&0&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&9&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&9\\\hline\phantom{lll}&&&&&\color{OrangeRed}{1}&\color{OrangeRed}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&0\\\hline\phantom{lll}&&&&&1&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$11$$$'s are in $$$100$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$100-11 \cdot 9 = 100 - 99= 1$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&9&0&.&9&0&\color{DarkCyan}{9}\end{array}&\\\color{Magenta}{11}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&0&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&9&9&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&0&\phantom{.}\\\hline\phantom{lll}&&1&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&9&9\\\hline\phantom{lll}&&&&&1&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&0\\\hline\phantom{lll}&&&&&\color{DarkCyan}{1}&\color{DarkCyan}{0}&\color{DarkCyan}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&9&9\\\hline\phantom{lll}&&&&&&&1\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1000}{11}=90. \overline{90}$$$
Answer: $$$\frac{1000}{11}=90.\overline{90}$$$