Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{9700}{100}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{9}&\phantom{7}&\phantom{.}&\phantom{0}\end{array}&\\100&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}9&7&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$100$$$'s are in $$$9$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$9-100 \cdot 0 = 9 - 0= 9$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}\color{Chartreuse}{0}&\phantom{0}&\phantom{9}&\phantom{7}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}\color{Chartreuse}{9}& 7 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&7&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$100$$$'s are in $$$97$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$97-100 \cdot 0 = 97 - 0= 97$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&\color{Green}{0}&\phantom{9}&\phantom{7}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&7& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Green}{9}&\color{Green}{7}&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}9&7&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$100$$$'s are in $$$970$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$970-100 \cdot 9 = 970 - 900= 70$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&\color{Purple}{9}&\phantom{7}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&7&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{9}&\color{Purple}{7}&\color{Purple}{0}&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}9&0&0&\phantom{.}\\\hline\phantom{lll}&7&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$100$$$'s are in $$$700$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$700-100 \cdot 7 = 700 - 700= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&9&\color{Violet}{7}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&7&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{lllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}9&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}9&0&0&\phantom{.}\\\hline\phantom{lll}&\color{Violet}{7}&\color{Violet}{0}&\color{Violet}{0}&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&7&0&0&\phantom{.}\\\hline\phantom{lll}&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$100$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-100 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccc}0&0&9&7&.&\color{Brown}{0}\end{array}&\\\color{Magenta}{100}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccc}9&7&0&0&.&0\end{array}}&\\&\begin{array}{lllll}-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&7&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}9&7&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}9&0&0&\phantom{.}\\\hline\phantom{lll}&7&0&0&\phantom{.}\\-&\phantom{7}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&7&0&0&\phantom{.}\\\hline\phantom{lll}&&&\color{Brown}{0}&\phantom{.}&\color{Brown}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{9700}{100}=97.0$$$
Answer: $$$\frac{9700}{100}=97.0$$$