$$$0.333333333333333$$$ to fraction
Your Input
Convert $$$0.333333333333333$$$ to a fraction.
Solution
First, convert the repeating part $$$0.333333333333333$$$ to a fraction.
Let $$$x = 0.333333333333333$$$.
Multiply both sides by $$$10$$$ raised to $$$1$$$ (number of digits to repeat), i.e. $$$10^{1} = 10$$$:
$$$10 x = 3.333333333333333$$$
Subtract the previous equation from the last one:
$$$9 x = 3$$$
Thus, $$$x = \frac{3}{9}$$$.
Since the greatest common divisor of the numerator and the denominator equals $$$3$$$, we can write that $$$\frac{3}{9} = \frac{1\cdot {\color{red}3}}{3\cdot {\color{red}3}}$$$.
Therefore, $$$0.333333333333333 = \frac{1}{3}$$$.
Don't forget about the non-repeating part $$$0$$$.
Since the integer part equals $$$0$$$, we don't add anything. This means that we won't get a mixed number, just a proper fraction.
Answer
$$$0.333333333333333 = \frac{1}{3}$$$A