$$$0.333333333333333$$$ to fraction

The calculator will convert the decimal $$$0.333333333333333$$$ to a fraction, with steps shown.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Convert $$$0.333333333333333$$$ to a fraction.

Solution

First, convert the repeating part $$$0.333333333333333$$$ to a fraction.

Let $$$x = 0.333333333333333$$$.

Multiply both sides by $$$10$$$ raised to $$$1$$$ (number of digits to repeat), i.e. $$$10^{1} = 10$$$:

$$$10 x = 3.333333333333333$$$

Subtract the previous equation from the last one:

$$$9 x = 3$$$

Thus, $$$x = \frac{3}{9}$$$.

Since the greatest common divisor of the numerator and the denominator equals $$$3$$$, we can write that $$$\frac{3}{9} = \frac{1\cdot {\color{red}3}}{3\cdot {\color{red}3}}$$$.

Therefore, $$$0.333333333333333 = \frac{1}{3}$$$.

Don't forget about the non-repeating part $$$0$$$.

Since the integer part equals $$$0$$$, we don't add anything. This means that we won't get a mixed number, just a proper fraction.

Answer

$$$0.333333333333333 = \frac{1}{3}$$$A


Please try a new game Rotatly