$$$\frac{\sqrt{59}}{59}\cdot \left\langle 7, 3, -1\right\rangle$$$
Your Input
Calculate $$$\frac{\sqrt{59}}{59}\cdot \left\langle 7, 3, -1\right\rangle$$$.
Solution
Multiply each coordinate of the vector by the scalar:
$$${\color{Green}\left(\frac{\sqrt{59}}{59}\right)}\cdot \left\langle 7, 3, -1\right\rangle = \left\langle {\color{Green}\left(\frac{\sqrt{59}}{59}\right)}\cdot \left(7\right), {\color{Green}\left(\frac{\sqrt{59}}{59}\right)}\cdot \left(3\right), {\color{Green}\left(\frac{\sqrt{59}}{59}\right)}\cdot \left(-1\right)\right\rangle = \left\langle \frac{7 \sqrt{59}}{59}, \frac{3 \sqrt{59}}{59}, - \frac{\sqrt{59}}{59}\right\rangle$$$
Answer
$$$\frac{\sqrt{59}}{59}\cdot \left\langle 7, 3, -1\right\rangle = \left\langle \frac{7 \sqrt{59}}{59}, \frac{3 \sqrt{59}}{59}, - \frac{\sqrt{59}}{59}\right\rangle\approx \left\langle 0.911322376865767, 0.390566732942472, -0.130188910980824\right\rangle$$$A