$$$\frac{\sqrt{14}}{14}\cdot \left\langle 1, 3, 2\right\rangle$$$
Your Input
Calculate $$$\frac{\sqrt{14}}{14}\cdot \left\langle 1, 3, 2\right\rangle$$$.
Solution
Multiply each coordinate of the vector by the scalar:
$$${\color{Chartreuse}\left(\frac{\sqrt{14}}{14}\right)}\cdot \left\langle 1, 3, 2\right\rangle = \left\langle {\color{Chartreuse}\left(\frac{\sqrt{14}}{14}\right)}\cdot \left(1\right), {\color{Chartreuse}\left(\frac{\sqrt{14}}{14}\right)}\cdot \left(3\right), {\color{Chartreuse}\left(\frac{\sqrt{14}}{14}\right)}\cdot \left(2\right)\right\rangle = \left\langle \frac{\sqrt{14}}{14}, \frac{3 \sqrt{14}}{14}, \frac{\sqrt{14}}{7}\right\rangle$$$
Answer
$$$\frac{\sqrt{14}}{14}\cdot \left\langle 1, 3, 2\right\rangle = \left\langle \frac{\sqrt{14}}{14}, \frac{3 \sqrt{14}}{14}, \frac{\sqrt{14}}{7}\right\rangle\approx \left\langle 0.267261241912424, 0.801783725737273, 0.534522483824849\right\rangle$$$A