$$$\frac{\sqrt{133}}{19}\cdot \left\langle \frac{6}{7}, \frac{4}{7}, - \frac{9}{7}\right\rangle$$$
Your Input
Calculate $$$\frac{\sqrt{133}}{19}\cdot \left\langle \frac{6}{7}, \frac{4}{7}, - \frac{9}{7}\right\rangle$$$.
Solution
Multiply each coordinate of the vector by the scalar:
$$${\color{BlueViolet}\left(\frac{\sqrt{133}}{19}\right)}\cdot \left\langle \frac{6}{7}, \frac{4}{7}, - \frac{9}{7}\right\rangle = \left\langle {\color{BlueViolet}\left(\frac{\sqrt{133}}{19}\right)}\cdot \left(\frac{6}{7}\right), {\color{BlueViolet}\left(\frac{\sqrt{133}}{19}\right)}\cdot \left(\frac{4}{7}\right), {\color{BlueViolet}\left(\frac{\sqrt{133}}{19}\right)}\cdot \left(- \frac{9}{7}\right)\right\rangle = \left\langle \frac{6 \sqrt{133}}{133}, \frac{4 \sqrt{133}}{133}, - \frac{9 \sqrt{133}}{133}\right\rangle$$$
Answer
$$$\frac{\sqrt{133}}{19}\cdot \left\langle \frac{6}{7}, \frac{4}{7}, - \frac{9}{7}\right\rangle = \left\langle \frac{6 \sqrt{133}}{133}, \frac{4 \sqrt{133}}{133}, - \frac{9 \sqrt{133}}{133}\right\rangle\approx \left\langle 0.520265981714472, 0.346843987809648, -0.780398972571708\right\rangle$$$A