$$$\frac{8}{7}\cdot \left\langle 1, 3, 2\right\rangle$$$
Your Input
Calculate $$$\frac{8}{7}\cdot \left\langle 1, 3, 2\right\rangle$$$.
Solution
Multiply each coordinate of the vector by the scalar:
$$${\color{DarkMagenta}\left(\frac{8}{7}\right)}\cdot \left\langle 1, 3, 2\right\rangle = \left\langle {\color{DarkMagenta}\left(\frac{8}{7}\right)}\cdot \left(1\right), {\color{DarkMagenta}\left(\frac{8}{7}\right)}\cdot \left(3\right), {\color{DarkMagenta}\left(\frac{8}{7}\right)}\cdot \left(2\right)\right\rangle = \left\langle \frac{8}{7}, \frac{24}{7}, \frac{16}{7}\right\rangle$$$
Answer
$$$\frac{8}{7}\cdot \left\langle 1, 3, 2\right\rangle = \left\langle \frac{8}{7}, \frac{24}{7}, \frac{16}{7}\right\rangle\approx \left\langle 1.142857142857143, 3.428571428571429, 2.285714285714286\right\rangle$$$A
Please try a new game Rotatly