$$$\frac{2}{\sqrt{10 - 2 \sqrt{5}}}\cdot \left\langle \frac{1}{2} - \frac{\sqrt{5}}{2}, 1\right\rangle$$$
Your Input
Calculate $$$\frac{2}{\sqrt{10 - 2 \sqrt{5}}}\cdot \left\langle \frac{1}{2} - \frac{\sqrt{5}}{2}, 1\right\rangle$$$.
Solution
Multiply each coordinate of the vector by the scalar:
$$${\color{GoldenRod}\left(\frac{2}{\sqrt{10 - 2 \sqrt{5}}}\right)}\cdot \left\langle \frac{1}{2} - \frac{\sqrt{5}}{2}, 1\right\rangle = \left\langle {\color{GoldenRod}\left(\frac{2}{\sqrt{10 - 2 \sqrt{5}}}\right)}\cdot \left(\frac{1}{2} - \frac{\sqrt{5}}{2}\right), {\color{GoldenRod}\left(\frac{2}{\sqrt{10 - 2 \sqrt{5}}}\right)}\cdot \left(1\right)\right\rangle = \left\langle \frac{- \sqrt{10} + \sqrt{2}}{2 \sqrt{5 - \sqrt{5}}}, \frac{\sqrt{2}}{\sqrt{5 - \sqrt{5}}}\right\rangle$$$
Answer
$$$\frac{2}{\sqrt{10 - 2 \sqrt{5}}}\cdot \left\langle \frac{1}{2} - \frac{\sqrt{5}}{2}, 1\right\rangle = \left\langle \frac{- \sqrt{10} + \sqrt{2}}{2 \sqrt{5 - \sqrt{5}}}, \frac{\sqrt{2}}{\sqrt{5 - \sqrt{5}}}\right\rangle\approx \left\langle -0.525731112119134, 0.85065080835204\right\rangle$$$A