$$$\frac{1}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\cdot \left\langle 7, 2 t, 3 t^{2}\right\rangle$$$

The calculator will multiply the vector $$$\left\langle 7, 2 t, 3 t^{2}\right\rangle$$$ by the scalar $$$\frac{1}{\sqrt{9 t^{4} + 4 t^{2} + 49}}$$$, with steps shown.
$$$\langle$$$ $$$\rangle$$$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate $$$\frac{1}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\cdot \left\langle 7, 2 t, 3 t^{2}\right\rangle$$$.

Solution

Multiply each coordinate of the vector by the scalar:

$$${\color{SaddleBrown}\left(\frac{1}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right)}\cdot \left\langle 7, 2 t, 3 t^{2}\right\rangle = \left\langle {\color{SaddleBrown}\left(\frac{1}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right)}\cdot \left(7\right), {\color{SaddleBrown}\left(\frac{1}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right)}\cdot \left(2 t\right), {\color{SaddleBrown}\left(\frac{1}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right)}\cdot \left(3 t^{2}\right)\right\rangle = \left\langle \frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{2 t}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{3 t^{2}}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right\rangle$$$

Answer

$$$\frac{1}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\cdot \left\langle 7, 2 t, 3 t^{2}\right\rangle = \left\langle \frac{7}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{2 t}{\sqrt{9 t^{4} + 4 t^{2} + 49}}, \frac{3 t^{2}}{\sqrt{9 t^{4} + 4 t^{2} + 49}}\right\rangle = \left\langle \frac{7}{\left(9 t^{4} + 4 t^{2} + 49\right)^{0.5}}, \frac{2 t}{\left(9 t^{4} + 4 t^{2} + 49\right)^{0.5}}, \frac{3 t^{2}}{\left(9 t^{4} + 4 t^{2} + 49\right)^{0.5}}\right\rangle$$$A


Please try a new game Rotatly