Magnitude of $$$\left\langle \frac{211}{69}, - \frac{84}{23}, - \frac{17}{69}, \frac{272}{69}, 1\right\rangle$$$

The calculator will find the magnitude (length, norm) of the vector $$$\left\langle \frac{211}{69}, - \frac{84}{23}, - \frac{17}{69}, \frac{272}{69}, 1\right\rangle$$$, with steps shown.
$$$\langle$$$ $$$\rangle$$$
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the magnitude (length) of $$$\mathbf{\vec{u}} = \left\langle \frac{211}{69}, - \frac{84}{23}, - \frac{17}{69}, \frac{272}{69}, 1\right\rangle$$$.

Solution

The vector magnitude of a vector is given by the formula $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

The sum of squares of the absolute values of the coordinates is $$$\left|{\frac{211}{69}}\right|^{2} + \left|{- \frac{84}{23}}\right|^{2} + \left|{- \frac{17}{69}}\right|^{2} + \left|{\frac{272}{69}}\right|^{2} + \left|{1}\right|^{2} = \frac{2711}{69}$$$.

Therefore, the magnitude of the vector is $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\frac{2711}{69}} = \frac{\sqrt{187059}}{69}$$$.

Answer

The magnitude is $$$\frac{\sqrt{187059}}{69}\approx 6.268162017087925$$$A.


Please try a new game Rotatly