RREF of $$$\left[\begin{array}{cc}1 & 2\\3 & 4\end{array}\right]$$$
Related calculators: Gauss-Jordan Elimination Calculator, Matrix Inverse Calculator
Your Input
Find the reduced row echelon form of $$$\left[\begin{array}{cc}1 & 2\\3 & 4\end{array}\right]$$$.
Solution
Subtract row $$$1$$$ multiplied by $$$3$$$ from row $$$2$$$: $$$R_{2} = R_{2} - 3 R_{1}$$$.
$$$\left[\begin{array}{cc}1 & 2\\0 & -2\end{array}\right]$$$
Divide row $$$2$$$ by $$$-2$$$: $$$R_{2} = - \frac{R_{2}}{2}$$$.
$$$\left[\begin{array}{cc}1 & 2\\0 & 1\end{array}\right]$$$
Subtract row $$$2$$$ multiplied by $$$2$$$ from row $$$1$$$: $$$R_{1} = R_{1} - 2 R_{2}$$$.
$$$\left[\begin{array}{cc}1 & 0\\0 & 1\end{array}\right]$$$
Answer
The reduced row echelon form is $$$\left[\begin{array}{cc}1 & 0\\0 & 1\end{array}\right]$$$A.