$$$\frac{\left[\begin{array}{cc}1 & 3\\2 & 4\end{array}\right]}{\sqrt{\sqrt{221} + 15}}$$$
Your Input
Calculate $$$\frac{\left[\begin{array}{cc}1 & 3\\2 & 4\end{array}\right]}{\sqrt{\sqrt{221} + 15}}$$$.
Solution
Multiply each entry of the matrix by the scalar:
$$${\color{Violet}\left(\frac{1}{\sqrt{\sqrt{221} + 15}}\right)}\cdot \left[\begin{array}{cc}1 & 3\\2 & 4\end{array}\right] = \left[\begin{array}{cc}{\color{Violet}\left(\frac{1}{\sqrt{\sqrt{221} + 15}}\right)}\cdot \left(1\right) & {\color{Violet}\left(\frac{1}{\sqrt{\sqrt{221} + 15}}\right)}\cdot \left(3\right)\\{\color{Violet}\left(\frac{1}{\sqrt{\sqrt{221} + 15}}\right)}\cdot \left(2\right) & {\color{Violet}\left(\frac{1}{\sqrt{\sqrt{221} + 15}}\right)}\cdot \left(4\right)\end{array}\right] = \left[\begin{array}{cc}\frac{1}{\sqrt{\sqrt{221} + 15}} & \frac{3}{\sqrt{\sqrt{221} + 15}}\\\frac{2}{\sqrt{\sqrt{221} + 15}} & \frac{4}{\sqrt{\sqrt{221} + 15}}\end{array}\right]$$$
Answer
$$$\frac{\left[\begin{array}{cc}1 & 3\\2 & 4\end{array}\right]}{\sqrt{\sqrt{221} + 15}} = \left[\begin{array}{cc}\frac{1}{\sqrt{\sqrt{221} + 15}} & \frac{3}{\sqrt{\sqrt{221} + 15}}\\\frac{2}{\sqrt{\sqrt{221} + 15}} & \frac{4}{\sqrt{\sqrt{221} + 15}}\end{array}\right]\approx \left[\begin{array}{cc}0.182983095313129 & 0.548949285939387\\0.365966190626258 & 0.731932381252516\end{array}\right]$$$A