$$$e^{\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]}$$$
Related calculator: Matrix Power Calculator
Your Input
Find $$$e^{\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]}$$$.
Solution
First, diagonalize the matrix (for steps, see matrix diagonalization calculator).
Since the matrix is not diagonalizable, write it as the sum of the diagonal matrix $$$D = \left[\begin{array}{cc}t & 0\\0 & t\end{array}\right]$$$ and the nilpotent matrix $$$N = \left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right]$$$.
Notice that $$$N^{2} = \left[\begin{array}{cc}0 & 0\\0 & 0\end{array}\right]$$$.
This means that $$$e^{N} = I + N$$$, i.e. $$$e^{\left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right]} = \left[\begin{array}{cc}1 & 0\\0 & 1\end{array}\right] + \left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right] = \left[\begin{array}{cc}1 & - t\\0 & 1\end{array}\right].$$$
The exponential of a diagonal matrix is a matrix whose diagonal entries are exponentiated: $$$e^{\left[\begin{array}{cc}t & 0\\0 & t\end{array}\right]} = \left[\begin{array}{cc}e^{t} & 0\\0 & e^{t}\end{array}\right].$$$
Now, $$$e^{\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]} = e^{\left[\begin{array}{cc}t & 0\\0 & t\end{array}\right] + \left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right]} = e^{\left[\begin{array}{cc}t & 0\\0 & t\end{array}\right]}\cdot e^{\left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right]} = \left[\begin{array}{cc}e^{t} & 0\\0 & e^{t}\end{array}\right]\cdot \left[\begin{array}{cc}1 & - t\\0 & 1\end{array}\right].$$$
Finally, multiply the matrices:
$$$\left[\begin{array}{cc}e^{t} & 0\\0 & e^{t}\end{array}\right]\cdot \left[\begin{array}{cc}1 & - t\\0 & 1\end{array}\right] = \left[\begin{array}{cc}e^{t} & - t e^{t}\\0 & e^{t}\end{array}\right]$$$ (for steps, see matrix multiplication calculator).
Answer
$$$e^{\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]} = \left[\begin{array}{cc}e^{t} & - t e^{t}\\0 & e^{t}\end{array}\right]$$$A