Matrix Division Calculator
The calculator will find the quotient of two matrices (if possible), with steps shown. It divides matrices of any size up to 7x7 (2x2, 3x3, 4x4, etc.).
Your Input
Calculate $$$\frac{\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\\1 & 2 & 3\end{array}\right]}{\left[\begin{array}{ccc}1 & 1 & 1\\2 & 3 & 4\\3 & 1 & 1\end{array}\right]}.$$$
Solution
By definition, $$$\frac{A}{B}=A\cdot B^{-1}$$$.
So, first find the inverse of $$$\left[\begin{array}{ccc}1 & 1 & 1\\2 & 3 & 4\\3 & 1 & 1\end{array}\right]$$$.
$$$\left[\begin{array}{ccc}1 & 1 & 1\\2 & 3 & 4\\3 & 1 & 1\end{array}\right]^{-1} = \left[\begin{array}{ccc}- \frac{1}{2} & 0 & \frac{1}{2}\\5 & -1 & -1\\- \frac{7}{2} & 1 & \frac{1}{2}\end{array}\right]$$$ (for steps, see inverse matrix calculator).
Finally, multiply the matrices: $$$\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\\1 & 2 & 3\end{array}\right]\cdot \left[\begin{array}{ccc}- \frac{1}{2} & 0 & \frac{1}{2}\\5 & -1 & -1\\- \frac{7}{2} & 1 & \frac{1}{2}\end{array}\right] = \left[\begin{array}{ccc}- \frac{3}{2} & 2 & \frac{1}{2}\\4 & -1 & 0\\-1 & 1 & 0\end{array}\right]$$$ (for steps, see matrix multiplication calculator).
Answer
$$$\frac{\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\\1 & 2 & 3\end{array}\right]}{\left[\begin{array}{ccc}1 & 1 & 1\\2 & 3 & 4\\3 & 1 & 1\end{array}\right]} = \left[\begin{array}{ccc}- \frac{3}{2} & 2 & \frac{1}{2}\\4 & -1 & 0\\-1 & 1 & 0\end{array}\right] = \left[\begin{array}{ccc}-1.5 & 2 & 0.5\\4 & -1 & 0\\-1 & 1 & 0\end{array}\right]$$$A