Matrix Division Calculator

The calculator will find the quotient of two matrices (if possible), with steps shown. It divides matrices of any size up to 7x7 (2x2, 3x3, 4x4 etc.).

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate $$$\frac{\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\\1 & 2 & 3\end{array}\right]}{\left[\begin{array}{ccc}1 & 1 & 1\\2 & 3 & 4\\3 & 1 & 1\end{array}\right]}.$$$

Solution

By definition, $$$\frac{A}{B}=A\cdot B^{-1}$$$.

So, first find the inverse of $$$\left[\begin{array}{ccc}1 & 1 & 1\\2 & 3 & 4\\3 & 1 & 1\end{array}\right]$$$.

$$$\left[\begin{array}{ccc}1 & 1 & 1\\2 & 3 & 4\\3 & 1 & 1\end{array}\right]^{-1} = \left[\begin{array}{ccc}- \frac{1}{2} & 0 & \frac{1}{2}\\5 & -1 & -1\\- \frac{7}{2} & 1 & \frac{1}{2}\end{array}\right]$$$ (for steps, see inverse matrix calculator).

Finally, multiply the matrices: $$$\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\\1 & 2 & 3\end{array}\right]\cdot \left[\begin{array}{ccc}- \frac{1}{2} & 0 & \frac{1}{2}\\5 & -1 & -1\\- \frac{7}{2} & 1 & \frac{1}{2}\end{array}\right] = \left[\begin{array}{ccc}- \frac{3}{2} & 2 & \frac{1}{2}\\4 & -1 & 0\\-1 & 1 & 0\end{array}\right]$$$ (for steps, see matrix multiplication calculator).

Answer

$$$\frac{\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\\1 & 2 & 3\end{array}\right]}{\left[\begin{array}{ccc}1 & 1 & 1\\2 & 3 & 4\\3 & 1 & 1\end{array}\right]} = \left[\begin{array}{ccc}- \frac{3}{2} & 2 & \frac{1}{2}\\4 & -1 & 0\\-1 & 1 & 0\end{array}\right] = \left[\begin{array}{ccc}-1.5 & 2 & 0.5\\4 & -1 & 0\\-1 & 1 & 0\end{array}\right]$$$A