Determinant of $$$\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}} - \lambda\end{array}\right]$$$

The calculator will find the determinant of the square $$$1$$$x$$$1$$$ matrix $$$\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}} - \lambda\end{array}\right]$$$, with steps shown.

Related calculator: Cofactor Matrix Calculator

A

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate $$$\left|\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}} - \lambda\end{array}\right|$$$.

Solution

The determinant of a 1x1 matrix is $$$\left|\begin{array}{c}a\end{array}\right| = a$$$.

$$$\left|\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}} - \lambda\end{array}\right| = i a g h m n r s t^{2} e^{e i n o r s^{2}} - \lambda$$$

Answer

$$$\left|\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}} - \lambda\end{array}\right| = i a g h m n r s t^{2} e^{e i n o r s^{2}} - \lambda$$$A


Please try a new game Rotatly