Determinant of $$$\left[\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right]$$$

The calculator will find the determinant of the square $$$2$$$x$$$2$$$ matrix $$$\left[\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right]$$$, with steps shown.

Related calculator: Cofactor Matrix Calculator

A

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate $$$\left|\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right|$$$.

Solution

The determinant of a 2x2 matrix is $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.

$$$\left|\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right| = \left(\cosh{\left(t \right)}\right)\cdot \left(0\right) - \left(1\right)\cdot \left(\sinh{\left(t \right)}\right) = - \sinh{\left(t \right)}$$$

Answer

$$$\left|\begin{array}{cc}\cosh{\left(t \right)} & 1\\\sinh{\left(t \right)} & 0\end{array}\right| = - \sinh{\left(t \right)}$$$A


Please try a new game Rotatly