Determinant of $$$\left[\begin{array}{cc}0 & - \frac{1}{50}\\\frac{1}{10} & - \frac{1}{100}\end{array}\right]$$$

The calculator will find the determinant of the square $$$2$$$x$$$2$$$ matrix $$$\left[\begin{array}{cc}0 & - \frac{1}{50}\\\frac{1}{10} & - \frac{1}{100}\end{array}\right]$$$, with steps shown.

Related calculator: Cofactor Matrix Calculator

A

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate $$$\left|\begin{array}{cc}0 & - \frac{1}{50}\\\frac{1}{10} & - \frac{1}{100}\end{array}\right|$$$.

Solution

The determinant of a 2x2 matrix is $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.

$$$\left|\begin{array}{cc}0 & - \frac{1}{50}\\\frac{1}{10} & - \frac{1}{100}\end{array}\right| = \left(0\right)\cdot \left(- \frac{1}{100}\right) - \left(- \frac{1}{50}\right)\cdot \left(\frac{1}{10}\right) = \frac{1}{500}$$$

Answer

$$$\left|\begin{array}{cc}0 & - \frac{1}{50}\\\frac{1}{10} & - \frac{1}{100}\end{array}\right| = \frac{1}{500} = 0.002$$$A


Please try a new game Rotatly