Matrix Determinant Calculator
Calculate matrix determinant step by step
The calculator will find the determinant of the matrix (2x2, 3x3, 4x4 etc.) using the cofactor expansion, with steps shown.
Related calculator: Cofactor Matrix Calculator
Your Input
Calculate $$$\left|\begin{array}{ccc}1 & 2 & 2\\0 & 5 & 7\\1 & 1 & 1\end{array}\right|$$$.
Solution
Subtract row $$$1$$$ from row $$$3$$$: $$$R_{3} = R_{3} - R_{1}$$$.
$$$\left|\begin{array}{ccc}1 & 2 & 2\\0 & 5 & 7\\1 & 1 & 1\end{array}\right| = \left|\begin{array}{ccc}1 & 2 & 2\\0 & 5 & 7\\0 & -1 & -1\end{array}\right|$$$
Expand along column $$$1$$$:
$$$\left|\begin{array}{ccc}1 & 2 & 2\\0 & 5 & 7\\0 & -1 & -1\end{array}\right| = \left(1\right) \left(-1\right)^{1 + 1} \left|\begin{array}{cc}5 & 7\\-1 & -1\end{array}\right| + \left(0\right) \left(-1\right)^{2 + 1} \left|\begin{array}{cc}2 & 2\\-1 & -1\end{array}\right| + \left(0\right) \left(-1\right)^{3 + 1} \left|\begin{array}{cc}2 & 2\\5 & 7\end{array}\right| = \left|\begin{array}{cc}5 & 7\\-1 & -1\end{array}\right|$$$
The determinant of a 2x2 matrix is $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.
$$$\left|\begin{array}{cc}5 & 7\\-1 & -1\end{array}\right| = \left(5\right)\cdot \left(-1\right) - \left(7\right)\cdot \left(-1\right) = 2$$$
Answer
$$$\left|\begin{array}{ccc}1 & 2 & 2\\0 & 5 & 7\\1 & 1 & 1\end{array}\right| = 2$$$A