Eigenvalues and eigenvectors of $$$\left[\begin{array}{cc}3 & -10\\1 & -4\end{array}\right]$$$
Related calculator: Characteristic Polynomial Calculator
Your Input
Find the eigenvalues and eigenvectors of $$$\left[\begin{array}{cc}3 & -10\\1 & -4\end{array}\right]$$$.
Solution
Start from forming a new matrix by subtracting $$$\lambda$$$ from the diagonal entries of the given matrix: $$$\left[\begin{array}{cc}3 - \lambda & -10\\1 & - \lambda - 4\end{array}\right]$$$.
The determinant of the obtained matrix is $$$\left(\lambda - 1\right) \left(\lambda + 2\right)$$$ (for steps, see determinant calculator).
Solve the equation $$$\left(\lambda - 1\right) \left(\lambda + 2\right) = 0$$$.
The roots are $$$\lambda_{1} = 1$$$, $$$\lambda_{2} = -2$$$ (for steps, see equation solver).
These are the eigenvalues.
Next, find the eigenvectors.
$$$\lambda = 1$$$
$$$\left[\begin{array}{cc}3 - \lambda & -10\\1 & - \lambda - 4\end{array}\right] = \left[\begin{array}{cc}2 & -10\\1 & -5\end{array}\right]$$$
The null space of this matrix is $$$\left\{\left[\begin{array}{c}5\\1\end{array}\right]\right\}$$$ (for steps, see null space calculator).
This is the eigenvector.
$$$\lambda = -2$$$
$$$\left[\begin{array}{cc}3 - \lambda & -10\\1 & - \lambda - 4\end{array}\right] = \left[\begin{array}{cc}5 & -10\\1 & -2\end{array}\right]$$$
The null space of this matrix is $$$\left\{\left[\begin{array}{c}2\\1\end{array}\right]\right\}$$$ (for steps, see null space calculator).
This is the eigenvector.
Answer
Eigenvalue: $$$1$$$A, multiplicity: $$$1$$$A, eigenvector: $$$\left[\begin{array}{c}5\\1\end{array}\right]$$$A.
Eigenvalue: $$$-2$$$A, multiplicity: $$$1$$$A, eigenvector: $$$\left[\begin{array}{c}2\\1\end{array}\right]$$$A.