Diagonalize $$$\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$
Your Input
Diagonalize $$$\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$.
Solution
First, find the eigenvalues and eigenvectors (for steps, see eigenvalues and eigenvectors calculator).
Eigenvalue: $$$i a g h m n r s t^{2} e^{e i n o r s^{2}}$$$, eigenvector: $$$\left[\begin{array}{c}1\end{array}\right]$$$.
Form the matrix $$$P$$$, whose column $$$i$$$ is eigenvector no. $$$i$$$: $$$P = \left[\begin{array}{c}1\end{array}\right]$$$.
Form the diagonal matrix $$$D$$$ whose element at row $$$i$$$, column $$$i$$$ is eigenvalue no. $$$i$$$: $$$D = \left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$.
The matrices $$$P$$$ and $$$D$$$ are such that the initial matrix $$$\left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right] = P D P^{-1}$$$.
$$$P^{-1} = \left[\begin{array}{c}1\end{array}\right]$$$ (for steps, see inverse matrix calculator).
Answer
$$$P = \left[\begin{array}{c}1\end{array}\right]$$$A
$$$D = \left[\begin{array}{c}i a g h m n r s t^{2} e^{e i n o r s^{2}}\end{array}\right]$$$A
$$$P^{-1} = \left[\begin{array}{c}1\end{array}\right]$$$A