Angle between Vectors Calculator

The calculator will find the angle (in radians and degrees) between the two vectors, and will show the work.

$$$\mathbf{\vec{u}}$$$: (
,
,
)
$$$\mathbf{\vec{v}}$$$: (
,
,
)
Hint: if you have two-dimensional vectors, set the third coordinates equal to or leave them empty.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate the angle $$$\phi$$$ between the vectors $$$\mathbf{\vec{u}} = \left(5, -2, 3\right)$$$ and $$$\mathbf{\vec{v}} = \left(-4, 5, 7\right)$$$.

Solution

First, calculate the dot product: $$$\mathbf{\vec{u}}\cdot \mathbf{\vec{v}} = -9$$$ (for steps, see dot product calculator).

Next, find the lengths of the vectors:

$$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{u_{x}^{2} + u_{y}^{2} + u_{z}^{2}} = \sqrt{5^{2} + \left(-2\right)^{2} + 3^{2}} = \sqrt{38}$$$ (for steps, see vector length calculator).

$$$\mathbf{\left\lvert\vec{v}\right\rvert} = \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}} = \sqrt{\left(-4\right)^{2} + 5^{2} + 7^{2}} = 3 \sqrt{10}$$$ (for steps, see vector length calculator).

Finally, the angle is given by $$$\cos{\left(\phi \right)} = \frac{\mathbf{\vec{u}}\cdot \mathbf{\vec{v}}}{\mathbf{\left\lvert\vec{u}\right\rvert} \mathbf{\left\lvert\vec{v}\right\rvert}} = \frac{-9}{\left(\sqrt{38}\right)\cdot \left(3 \sqrt{10}\right)} = - \frac{3 \sqrt{95}}{190}.$$$

$$$\phi = \operatorname{acos}{\left(- \frac{3 \sqrt{95}}{190} \right)} = \left(\frac{180 \operatorname{acos}{\left(- \frac{3 \sqrt{95}}{190} \right)}}{\pi}\right)^0$$$

Answer

$$$\phi = \operatorname{acos}{\left(- \frac{3 \sqrt{95}}{190} \right)}\approx 1.72530713409797$$$A

$$$\phi = \left(\frac{180 \operatorname{acos}{\left(- \frac{3 \sqrt{95}}{190} \right)}}{\pi}\right)^0\approx 98.8528171476251^0$$$A