# Adjugate Matrix Calculator

The calculator will find the adjugate (adjoint, adjunct) matrix of the given square matrix, with steps shown.

## Your Input

**Find the adjugate matrix of $$$\left[\begin{array}{ccc}1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9\end{array}\right]$$$.**

## Solution

The adjugate, classical adjoint, or adjunct of a square matrix is the transpose of its cofactor matrix.

The cofactor matrix is $$$\left[\begin{array}{ccc}-3 & 6 & -3\\6 & -12 & 6\\-3 & 6 & -3\end{array}\right]$$$ (for steps, see cofactor matrix calculator).

The transpose of the cofactor matrix is $$$\left[\begin{array}{ccc}-3 & 6 & -3\\6 & -12 & 6\\-3 & 6 & -3\end{array}\right]$$$ (for steps, see matrix transpose calculator).

## Answer

**The adjugate matrix is $$$\left[\begin{array}{ccc}-3 & 6 & -3\\6 & -12 & 6\\-3 & 6 & -3\end{array}\right]$$$A.**