Law of Sines Calculator
Solve triangles using the law of sines
The calculator will solve the given triangle using the law of sines (wherever possible), with steps shown.
Related calculator: Law of Cosines Calculator
Your Input
Solve the triangle, if $$$b = 3$$$, $$$A = 60^0$$$, $$$B = 45^0$$$.
Solution
According to the law of sines: $$$\frac{a}{\sin{\left(A \right)}} = \frac{b}{\sin{\left(B \right)}}$$$.
In our case, $$$\frac{a}{\sin{\left(60^0 \right)}} = \frac{3}{\sin{\left(45^0 \right)}}$$$.
Thus, $$$a = \frac{3 \sin{\left(60^0 \right)}}{\sin{\left(45^0 \right)}} = \frac{3 \sqrt{6}}{2}$$$.
The third angle is $$$C = 180^0 - \left(A + B\right)$$$.
In our case, $$$C = 180^0 - \left(60^0 + 45^0\right) = 75^0$$$.
According to the law of sines: $$$\frac{c}{\sin{\left(C \right)}} = \frac{b}{\sin{\left(B \right)}}$$$.
In our case, $$$\frac{c}{\sin{\left(75^0 \right)}} = \frac{3}{\sin{\left(45^0 \right)}}$$$.
Thus, $$$c = \frac{3 \sin{\left(75^0 \right)}}{\sin{\left(45^0 \right)}} = \frac{3 \left(1 + \sqrt{3}\right)}{2}$$$.
The area is $$$S = \frac{1}{2} a b \sin{\left(C \right)} = \left(\frac{1}{2}\right)\cdot \left(\frac{3 \sqrt{6}}{2}\right)\cdot \left(3\right)\cdot \left(\sin{\left(75^0 \right)}\right) = \frac{9 \left(\sqrt{3} + 3\right)}{8}.$$$
The perimeter is $$$P = a + b + c = \frac{3 \sqrt{6}}{2} + 3 + \frac{3 \left(1 + \sqrt{3}\right)}{2} = \frac{3 \left(\sqrt{3} + \sqrt{6} + 3\right)}{2}$$$.
Answer
$$$a = \frac{3 \sqrt{6}}{2}\approx 3.674234614174767$$$A
$$$b = 3$$$A
$$$c = \frac{3 \left(1 + \sqrt{3}\right)}{2}\approx 4.098076211353316$$$A
$$$A = 60^0$$$A
$$$B = 45^0$$$A
$$$C = 75^0$$$A
Area: $$$S = \frac{9 \left(\sqrt{3} + 3\right)}{8}\approx 5.323557158514987$$$A.
Perimeter: $$$P = \frac{3 \left(\sqrt{3} + \sqrt{6} + 3\right)}{2}\approx 10.772310825528083$$$A.