Simplify $$$\left(\left(1 \cdot 0\right) + \overline{0}\right) \cdot \left(\overline{1} + 0 + 1\right)$$$

The calculator will simplify the boolean expression $$$\left(\left(1 \cdot 0\right) + \overline{0}\right) \cdot \left(\overline{1} + 0 + 1\right)$$$, with steps shown.

Related calculator: Truth Table Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Simplify the boolean expression $$$\left(\left(1 \cdot 0\right) + \overline{0}\right) \cdot \left(\overline{1} + 0 + 1\right)$$$.

Solution

Apply the negation law $$$\overline{0} = 1$$$:

$$\left(\left(1 \cdot 0\right) + {\color{red}\left(\overline{0}\right)}\right) \cdot \left(\overline{1} + 0 + 1\right) = \left(\left(1 \cdot 0\right) + {\color{red}\left(1\right)}\right) \cdot \left(\overline{1} + 0 + 1\right)$$

Apply the negation law $$$\overline{1} = 0$$$:

$$\left(\left(1 \cdot 0\right) + 1\right) \cdot \left({\color{red}\left(\overline{1}\right)} + 0 + 1\right) = \left(\left(1 \cdot 0\right) + 1\right) \cdot \left({\color{red}\left(0\right)} + 0 + 1\right)$$

Apply the dominant (null, annulment) law $$$x + 1 = 1$$$ with $$$x = 1 \cdot 0$$$:

$${\color{red}\left(\left(1 \cdot 0\right) + 1\right)} \cdot \left(0 + 0 + 1\right) = {\color{red}\left(1\right)} \cdot \left(0 + 0 + 1\right)$$

Apply the dominant (null, annulment) law $$$x + 1 = 1$$$ with $$$x = 0$$$:

$$1 \cdot \left(0 + {\color{red}\left(0 + 1\right)}\right) = 1 \cdot \left(0 + {\color{red}\left(1\right)}\right)$$

Apply the dominant (null, annulment) law $$$x + 1 = 1$$$ with $$$x = 0$$$:

$$1 \cdot {\color{red}\left(0 + 1\right)} = 1 \cdot {\color{red}\left(1\right)}$$

Apply the identity law $$$x \cdot 1 = x$$$ with $$$x = 1$$$:

$${\color{red}\left(1 \cdot 1\right)} = {\color{red}\left(1\right)}$$

Answer

$$$\left(\left(1 \cdot 0\right) + \overline{0}\right) \cdot \left(\overline{1} + 0 + 1\right) = 1$$$

The DNF is $$$\text{True}$$$.

The CNF is $$$\text{True}$$$.

The NNF is $$$\text{True}$$$.


Please try a new game Rotatly