Wronskian of $$$x$$$, $$$x^{5}$$$

The calculator will find the Wronskian of the $$$2$$$ functions $$$x$$$, $$$x^{5}$$$, with steps shown.
Comma-separated.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate the Wronskian of $$$\left\{f_{1} = x, f_{2} = x^{5}\right\}$$$.

Solution

The Wronskian is given by the following determinant: $$$W{\left(f_{1},f_{2} \right)}\left(x\right) = \left|\begin{array}{cc}f_{1}\left(x\right) & f_{2}\left(x\right)\\f_{1}^{\prime}\left(x\right) & f_{2}^{\prime}\left(x\right)\end{array}\right|.$$$

In our case, $$$W{\left(f_{1},f_{2} \right)}\left(x\right) = \left|\begin{array}{cc}x & x^{5}\\\left(x\right)^{\prime } & \left(x^{5}\right)^{\prime }\end{array}\right|.$$$

Find the derivatives (for steps, see derivative calculator): $$$W{\left(f_{1},f_{2} \right)}\left(x\right) = \left|\begin{array}{cc}x & x^{5}\\1 & 5 x^{4}\end{array}\right|$$$.

Find the determinant (for steps, see determinant calculator): $$$\left|\begin{array}{cc}x & x^{5}\\1 & 5 x^{4}\end{array}\right| = 4 x^{5}$$$.

Answer

The Wronskian equals $$$4 x^{5}$$$A.


Please try a new game Rotatly