Inverse Laplace Transform of $$$\frac{2 s - 1}{s^{4} + s^{2} + 1}$$$

The calculator will try to find the Inverse Laplace transform of the function $$$F{\left(s \right)} = \frac{2 s - 1}{s^{4} + s^{2} + 1}$$$.

Related calculator: Laplace Transform Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\mathcal{L}^{-1}_{s}\left(\frac{2 s - 1}{s^{4} + s^{2} + 1}\right)$$$.

Answer

The Inverse Laplace transform of $$$\frac{2 s - 1}{s^{4} + s^{2} + 1}$$$A is $$$\frac{\sqrt{3} e^{\frac{t}{2}} \sin{\left(\frac{\sqrt{3} t}{2} \right)}}{2} + \frac{e^{\frac{t}{2}} \cos{\left(\frac{\sqrt{3} t}{2} \right)}}{2} - \frac{5 \sqrt{3} e^{- \frac{t}{2}} \sin{\left(\frac{\sqrt{3} t}{2} \right)}}{6} - \frac{e^{- \frac{t}{2}} \cos{\left(\frac{\sqrt{3} t}{2} \right)}}{2}.$$$A


Please try a new game Rotatly