Inverse Laplace Transform of $$$\frac{1}{s \left(\frac{s}{s + 1} + \frac{2}{2 s + 1}\right)}$$$

The calculator will try to find the Inverse Laplace transform of the function $$$F{\left(s \right)} = \frac{1}{s \left(\frac{s}{s + 1} + \frac{2}{2 s + 1}\right)}$$$.

Related calculator: Laplace Transform Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\mathcal{L}^{-1}_{s}\left(\frac{1}{s \left(\frac{s}{s + 1} + \frac{2}{2 s + 1}\right)}\right)$$$.

Answer

The Inverse Laplace transform of $$$\frac{1}{s \left(\frac{s}{s + 1} + \frac{2}{2 s + 1}\right)}$$$A is $$$\frac{1}{2} + \frac{3 \sqrt{7} e^{- \frac{3 t}{4}} \sin{\left(\frac{\sqrt{7} t}{4} \right)}}{14} + \frac{e^{- \frac{3 t}{4}} \cos{\left(\frac{\sqrt{7} t}{4} \right)}}{2}$$$A.


Please try a new game Rotatly