Torsion of $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(2 t \right)}, \cos{\left(2 t \right)}, t\right\rangle$$$
Related calculator: Curvature Calculator
Your Input
Find the torsion of $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(2 t \right)}, \cos{\left(2 t \right)}, t\right\rangle$$$.
Solution
Find the derivative of $$$\mathbf{\vec{r}\left(t\right)}$$$: $$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 2 \cos{\left(2 t \right)}, - 2 \sin{\left(2 t \right)}, 1\right\rangle$$$ (for steps, see derivative calculator).
Find the derivative of $$$\mathbf{\vec{r}^{\prime}\left(t\right)}$$$: $$$\mathbf{\vec{r}^{\prime\prime}\left(t\right)} = \left\langle - 4 \sin{\left(2 t \right)}, - 4 \cos{\left(2 t \right)}, 0\right\rangle$$$ (for steps, see derivative calculator).
Find the cross product: $$$\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)} = \left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$ (for steps, see cross product calculator).
Find the magnitude of $$$\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}$$$: $$$\mathbf{\left\lvert \mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right\rvert} = 4 \sqrt{5}$$$ (for steps, see magnitude calculator).
Find the derivative of $$$\mathbf{\vec{r}^{\prime\prime}\left(t\right)}$$$: $$$\mathbf{\vec{r}^{\prime\prime\prime}\left(t\right)} = \left\langle - 8 \cos{\left(2 t \right)}, 8 \sin{\left(2 t \right)}, 0\right\rangle$$$ (for steps, see derivative calculator).
Find the dot product: $$$\left(\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right)\cdot \mathbf{\vec{r}^{\prime\prime\prime}\left(t\right)} = -32$$$ (for steps, see dot product calculator).
Finally, the torsion is $$$\tau\left(t\right) = \frac{\left(\mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right)\cdot \mathbf{\vec{r}^{\prime\prime\prime}\left(t\right)}}{\mathbf{\left\lvert \mathbf{\vec{r}^{\prime}\left(t\right)}\times \mathbf{\vec{r}^{\prime\prime}\left(t\right)}\right\rvert}^{2}} = - \frac{2}{5}.$$$
Answer
The torsion is $$$\tau\left(t\right) = - \frac{2}{5}$$$A.