Lagrange multipliers: find maxima and minima of $$$f{\left(x,y \right)} = 4 x + y$$$, subject to $$$20 = \frac{5 \sqrt{x} \sqrt{y}}{4}$$$

The calculator will try to find the maxima and minima of the multivariable function $$$f{\left(x,y \right)} = 4 x + y$$$, subject to the constraint $$$20 = \frac{5 \sqrt{x} \sqrt{y}}{4}$$$, using the method of Lagrange multipliers, with steps shown.

Related calculator: Critical Points, Extrema, and Saddle Points Calculator

Optional.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the maximum and minimum values of $$$f{\left(x,y \right)} = 4 x + y$$$ subject to the constraint $$$20 = \frac{5 \sqrt{x} \sqrt{y}}{4}$$$.

Solution

Attention! This calculator doesn't check the conditions for applying the method of Lagrange multipliers. Use it at your own risk: the answer may be incorrect.

Rewrite the constraint $$$20 = \frac{5 \sqrt{x} \sqrt{y}}{4}$$$ as $$$- \frac{5 \sqrt{x} \sqrt{y}}{4} + 20 = 0$$$.

Form the Lagrangian: $$$L{\left(x,y,\lambda \right)} = \left(4 x + y\right) + \lambda \left(- \frac{5 \sqrt{x} \sqrt{y}}{4} + 20\right)$$$.

Find all the first-order partial derivatives:

$$$\frac{\partial}{\partial x} \left(\left(4 x + y\right) + \lambda \left(- \frac{5 \sqrt{x} \sqrt{y}}{4} + 20\right)\right) = - \frac{5 \lambda \sqrt{y}}{8 \sqrt{x}} + 4$$$ (for steps, see partial derivative calculator).

$$$\frac{\partial}{\partial y} \left(\left(4 x + y\right) + \lambda \left(- \frac{5 \sqrt{x} \sqrt{y}}{4} + 20\right)\right) = - \frac{5 \lambda \sqrt{x}}{8 \sqrt{y}} + 1$$$ (for steps, see partial derivative calculator).

$$$\frac{\partial}{\partial \lambda} \left(\left(4 x + y\right) + \lambda \left(- \frac{5 \sqrt{x} \sqrt{y}}{4} + 20\right)\right) = - \frac{5 \sqrt{x} \sqrt{y}}{4} + 20$$$ (for steps, see partial derivative calculator).

Next, solve the system $$$\begin{cases} \frac{\partial L}{\partial x} = 0 \\ \frac{\partial L}{\partial y} = 0 \\ \frac{\partial L}{\partial \lambda} = 0 \end{cases}$$$, or $$$\begin{cases} - \frac{5 \lambda \sqrt{y}}{8 \sqrt{x}} + 4 = 0 \\ - \frac{5 \lambda \sqrt{x}}{8 \sqrt{y}} + 1 = 0 \\ - \frac{5 \sqrt{x} \sqrt{y}}{4} + 20 = 0 \end{cases}.$$$

The system has the following real solution: $$$\left(x, y\right) = \left(8, 32\right)$$$.

$$$f{\left(8,32 \right)} = 64$$$

Take the point $$$\left(x, y\right) = \left(\frac{801}{100}, \frac{25600}{801}\right)$$$.

Since $$$f{\left(\frac{801}{100},\frac{25600}{801} \right)} = \frac{1281601}{20025}$$$ is greater than $$$64$$$, it can be stated that $$$64$$$ is the minimum.

Answer

Maximum

No maximum.

Minimum

$$$64$$$A at $$$\left(x, y\right) = \left(8, 32\right)$$$A.


Please try a new game Rotatly