Curl of $$$\left\langle y z, x z, x y\right\rangle$$$

The calculator will find the curl of the vector field $$$\left\langle y z, x z, x y\right\rangle$$$, with steps shown.

Related calculators: Partial Derivative Calculator, Cross Product Calculator, Matrix Determinant Calculator

$$$\langle$$$
,
,
$$$\rangle$$$
$$$($$$
,
,
$$$)$$$
Leave empty, if you don't need the curl at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate $$$\operatorname{curl} \left\langle y z, x z, x y\right\rangle$$$.

Solution

By definition, $$$\operatorname{curl} \left\langle y z, x z, x y\right\rangle = \nabla\times \left\langle y z, x z, x y\right\rangle$$$, or, equivalently, $$$\operatorname{curl} \left\langle y z, x z, x y\right\rangle = \left|\begin{array}{ccc}\mathbf{\vec{i}} & \mathbf{\vec{j}} & \mathbf{\vec{k}}\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\y z & x z & x y\end{array}\right|$$$, where $$$\times$$$ is the cross product operator.

Thus, $$$\operatorname{curl} \left\langle y z, x z, x y\right\rangle = \left\langle \frac{\partial}{\partial y} \left(x y\right) - \frac{\partial}{\partial z} \left(x z\right), \frac{\partial}{\partial z} \left(y z\right) - \frac{\partial}{\partial x} \left(x y\right), \frac{\partial}{\partial x} \left(x z\right) - \frac{\partial}{\partial y} \left(y z\right)\right\rangle.$$$

Find the partial derivatives:

$$$\frac{\partial}{\partial y} \left(x y\right) = x$$$ (for steps, see derivative calculator).

$$$\frac{\partial}{\partial z} \left(x z\right) = x$$$ (for steps, see derivative calculator).

$$$\frac{\partial}{\partial z} \left(y z\right) = y$$$ (for steps, see derivative calculator).

$$$\frac{\partial}{\partial x} \left(x y\right) = y$$$ (for steps, see derivative calculator).

$$$\frac{\partial}{\partial x} \left(x z\right) = z$$$ (for steps, see derivative calculator).

$$$\frac{\partial}{\partial y} \left(y z\right) = z$$$ (for steps, see derivative calculator).

Now, just plug in the found partial derivatives to get the curl: $$$\operatorname{curl} \left\langle y z, x z, x y\right\rangle = \left\langle 0, 0, 0\right\rangle$$$.

Answer

$$$\operatorname{curl} \left\langle y z, x z, x y\right\rangle = \left\langle 0, 0, 0\right\rangle$$$A


Please try a new game Rotatly