$$$\sum_{n=4}^{\infty} \frac{2^{- n} n!}{24 \left(n - 4\right)!}$$$
Your Input
Find $$$\sum_{n=4}^{\infty} \frac{2^{- n} n!}{24 \left(n - 4\right)!}$$$.
Solution
Simplify:
$$\sum_{n=4}^{\infty} \frac{2^{- n} n!}{24 \left(n - 4\right)!}=\sum_{n=4}^{\infty} \frac{2^{- n} n \left(n - 3\right) \left(n - 2\right) \left(n - 1\right)}{24}$$
Pull the constant out of the series:
$${\color{red}{\left(\sum_{n=4}^{\infty} \frac{2^{- n} n \left(n - 3\right) \left(n - 2\right) \left(n - 1\right)}{24}\right)}}={\color{red}{\left(\frac{\sum_{n=4}^{\infty} 2^{- n} n \left(n - 3\right) \left(n - 2\right) \left(n - 1\right)}{24}\right)}}$$
By the ratio test, the series is convergent.
Consider the sum $$$\sum_{n=4}^{\infty} z_{0}^{n}=\frac{z_{0}^{4}}{1 - z_{0}}$$$ (see steps).
By the ratio test, it is convergent when $$$\left|{z_{0}}\right| < 1$$$.
Differentiate both sides of the equality $$$4$$$ times with respect to $$$z_{0}$$$ (for steps, see derivative calculator):
$$\sum_{n=4}^{\infty} \frac{n z_{0}^{n} \left(n^{3} - 6 n^{2} + 11 n - 6\right)}{z_{0}^{4}}=- \frac{24}{z_{0}^{5} - 5 z_{0}^{4} + 10 z_{0}^{3} - 10 z_{0}^{2} + 5 z_{0} - 1}$$
Multiply both sides by $$$z_{0}^{4}$$$:
$$\sum_{n=4}^{\infty} n z_{0}^{n} \left(n^{3} - 6 n^{2} + 11 n - 6\right)=- \frac{24 z_{0}^{4}}{z_{0}^{5} - 5 z_{0}^{4} + 10 z_{0}^{3} - 10 z_{0}^{2} + 5 z_{0} - 1}$$
Setting $$$z_{0}=\frac{1}{2}$$$, we get that
$$\sum_{n=4}^{\infty} 2^{- n} n \left(n - 3\right) \left(n - 2\right) \left(n - 1\right)=48$$
Therefore,
$$\frac{{\color{red}{\left(\sum_{n=4}^{\infty} 2^{- n} n \left(n - 3\right) \left(n - 2\right) \left(n - 1\right)\right)}}}{24}=\frac{{\color{red}{\left(48\right)}}}{24}$$
Hence,
$$\sum_{n=4}^{\infty} \frac{2^{- n} n!}{24 \left(n - 4\right)!}=2$$
Answer
$$$\sum_{n=4}^{\infty} \frac{2^{- n} n!}{24 \left(n - 4\right)!} = 2$$$A