Taylor and Maclaurin (Power) Series Calculator

Find Taylor/Maclaurin series step by step

The calculator will find the Taylor (or power) series expansion of the given function around the given point, with steps shown. You can specify the order of the Taylor polynomial. If you want the Maclaurin polynomial, just set the point to $$$0$$$.

Enter a function:

Enter a point:

For Maclaurin series, set the point to `0`.

Order `n=`

Evaluate the series and find the error at the point

The point is optional.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate the Taylor (Maclaurin) series of $$$\frac{1}{x}$$$ up to $$$n=5$$$

A Maclaurin series is given by $$$f\left(x\right)=\sum\limits_{k=0}^{\infty}\frac{f^{(k)}\left(a\right)}{k!}x^k$$$

In our case, $$$f\left(x\right) \approx P\left(x\right) = \sum\limits_{k=0}^{n}\frac{f^{(k)}\left(a\right)}{k!}x^k=\sum\limits_{k=0}^{5}\frac{f^{(k)}\left(a\right)}{k!}x^k$$$

So, what we need to do to get the desired polynomial is to calculate the derivatives, evaluate them at the given point, and plug the results into the given formula.

$$$f^{(0)}\left(x\right)=f\left(x\right)=\frac{1}{x}$$$

Evaluate the function at the point: as can be seen, the function does not exist at the given point.

Answer: the Taylor (Maclaurin) series can't be found at the given point.


Please try a new game Rotatly