Difference quotient for $$$f{\left(x \right)} = 3 x^{2} - 4 x$$$
Your Input
Find the difference quotient for $$$f{\left(x \right)} = 3 x^{2} - 4 x$$$.
Solution
The difference quotient is given by $$$\frac{f{\left(x + h \right)} - f{\left(x \right)}}{h}$$$.
To find $$$f{\left(x + h \right)}$$$, plug $$$x + h$$$ instead of $$$x$$$: $$$f{\left(x + h \right)} = 3 \left(x + h\right)^{2} - 4 \left(x + h\right)$$$.
Finally, $$$\frac{f{\left(x + h \right)} - f{\left(x \right)}}{h} = \frac{\left(3 \left(x + h\right)^{2} - 4 \left(x + h\right)\right) - \left(3 x^{2} - 4 x\right)}{h} = 3 h + 6 x - 4$$$.
Answer
The difference quotient for $$$f{\left(x \right)} = 3 x^{2} - 4 x$$$A is $$$3 h + 6 x - 4$$$A.
Please try a new game Rotatly