Polar form of $$$8$$$
Your Input
Find the polar form of $$$8$$$.
Solution
The standard form of the complex number is $$$8$$$.
For a complex number $$$a + b i$$$, the polar form is given by $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$, where $$$r = \sqrt{a^{2} + b^{2}}$$$ and $$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$.
We have that $$$a = 8$$$ and $$$b = 0$$$.
Thus, $$$r = \sqrt{8^{2} + 0^{2}} = 8$$$.
Also, $$$\theta = \operatorname{atan}{\left(\frac{0}{8} \right)} = 0$$$.
Therefore, $$$8 = 8 \left(\cos{\left(0 \right)} + i \sin{\left(0 \right)}\right)$$$.
Answer
$$$8 = 8 \left(\cos{\left(0 \right)} + i \sin{\left(0 \right)}\right) = 8 \left(\cos{\left(0^{\circ} \right)} + i \sin{\left(0^{\circ} \right)}\right)$$$A
Please try a new game Rotatly