Polar form of $$$- 2 \sqrt{3} - 6 i$$$

The calculator will find the polar form of the complex number $$$- 2 \sqrt{3} - 6 i$$$, with steps shown.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the polar form of $$$- 2 \sqrt{3} - 6 i$$$.

Solution

The standard form of the complex number is $$$- 2 \sqrt{3} - 6 i$$$.

For a complex number $$$a + b i$$$, the polar form is given by $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$, where $$$r = \sqrt{a^{2} + b^{2}}$$$ and $$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$.

We have that $$$a = - 2 \sqrt{3}$$$ and $$$b = -6$$$.

Thus, $$$r = \sqrt{\left(- 2 \sqrt{3}\right)^{2} + \left(-6\right)^{2}} = 4 \sqrt{3}$$$.

Also, $$$\theta = \operatorname{atan}{\left(\frac{-6}{- 2 \sqrt{3}} \right)} - \pi = - \frac{2 \pi}{3}$$$.

Therefore, $$$- 2 \sqrt{3} - 6 i = 4 \sqrt{3} \left(\cos{\left(- \frac{2 \pi}{3} \right)} + i \sin{\left(- \frac{2 \pi}{3} \right)}\right)$$$.

Answer

$$$- 2 \sqrt{3} - 6 i = 4 \sqrt{3} \left(\cos{\left(- \frac{2 \pi}{3} \right)} + i \sin{\left(- \frac{2 \pi}{3} \right)}\right) = 4 \sqrt{3} \left(\cos{\left(-120^{\circ} \right)} + i \sin{\left(-120^{\circ} \right)}\right)$$$A


Please try a new game Rotatly