Partial Fraction Decomposition Calculator
Find partial fractions step by step
This online calculator will find the partial fraction decomposition of the rational function, with steps shown.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{1}{y \left(1 - y\right)}$$$
Simplify the expression: $$$\frac{1}{y \left(1 - y\right)}=\frac{-1}{y \left(y - 1\right)}$$$
The form of the partial fraction decomposition is
$$\frac{-1}{y \left(y - 1\right)}=\frac{A}{y}+\frac{B}{y - 1}$$
Write the right-hand side as a single fraction:
$$\frac{-1}{y \left(y - 1\right)}=\frac{y B + \left(y - 1\right) A}{y \left(y - 1\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$-1=y B + \left(y - 1\right) A$$
Expand the right-hand side:
$$-1=y A + y B - A$$
Collect up the like terms:
$$-1=y \left(A + B\right) - A$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B = 0\\- A = -1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=1$$$, $$$B=-1$$$
Therefore,
$$\frac{-1}{y \left(y - 1\right)}=\frac{1}{y}+\frac{-1}{y - 1}$$
Answer: $$$\frac{1}{y \left(1 - y\right)}=\frac{1}{y}+\frac{-1}{y - 1}$$$