Partial Fraction Decomposition Calculator
Find partial fractions step by step
This online calculator will find the partial fraction decomposition of the rational function, with steps shown.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{x^{2} - 3}{x^{3} - 72 x}$$$
Simplify the expression: $$$\frac{x^{2} - 3}{x^{3} - 72 x}=\frac{x^{2} - 3}{x \left(x^{2} - 72\right)}$$$
Factor the denominator: $$$\frac{x^{2} - 3}{x \left(x^{2} - 72\right)}=\frac{x^{2} - 3}{x \left(x - 6 \sqrt{2}\right) \left(x + 6 \sqrt{2}\right)}$$$
The form of the partial fraction decomposition is
$$\frac{x^{2} - 3}{x \left(x - 6 \sqrt{2}\right) \left(x + 6 \sqrt{2}\right)}=\frac{A}{x}+\frac{B}{x - 6 \sqrt{2}}+\frac{C}{x + 6 \sqrt{2}}$$
Write the right-hand side as a single fraction:
$$\frac{x^{2} - 3}{x \left(x - 6 \sqrt{2}\right) \left(x + 6 \sqrt{2}\right)}=\frac{x \left(x - 6 \sqrt{2}\right) C + x \left(x + 6 \sqrt{2}\right) B + \left(x - 6 \sqrt{2}\right) \left(x + 6 \sqrt{2}\right) A}{x \left(x - 6 \sqrt{2}\right) \left(x + 6 \sqrt{2}\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$x^{2} - 3=x \left(x - 6 \sqrt{2}\right) C + x \left(x + 6 \sqrt{2}\right) B + \left(x - 6 \sqrt{2}\right) \left(x + 6 \sqrt{2}\right) A$$
Expand the right-hand side:
$$x^{2} - 3=x^{2} A + x^{2} B + x^{2} C + 6 \sqrt{2} x B - 6 \sqrt{2} x C - 72 A$$
Collect up the like terms:
$$x^{2} - 3=x^{2} \left(A + B + C\right) + x \left(6 \sqrt{2} B - 6 \sqrt{2} C\right) - 72 A$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B + C = 1\\6 \sqrt{2} B - 6 \sqrt{2} C = 0\\- 72 A = -3 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=\frac{1}{24}$$$, $$$B=\frac{23}{48}$$$, $$$C=\frac{23}{48}$$$
Therefore,
$$\frac{x^{2} - 3}{x \left(x - 6 \sqrt{2}\right) \left(x + 6 \sqrt{2}\right)}=\frac{\frac{1}{24}}{x}+\frac{\frac{23}{48}}{x - 6 \sqrt{2}}+\frac{\frac{23}{48}}{x + 6 \sqrt{2}}$$
Answer: $$$\frac{x^{2} - 3}{x^{3} - 72 x}=\frac{\frac{1}{24}}{x}+\frac{\frac{23}{48}}{x - 6 \sqrt{2}}+\frac{\frac{23}{48}}{x + 6 \sqrt{2}}$$$