Partial Fraction Decomposition Calculator
Find partial fractions step by step
This online calculator will find the partial fraction decomposition of the rational function, with steps shown.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}$$$
The form of the partial fraction decomposition is
$$\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}=\frac{A}{x}+\frac{B}{x - 3}+\frac{C}{x - 2}$$
Write the right-hand side as a single fraction:
$$\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}=\frac{x \left(x - 3\right) C + x \left(x - 2\right) B + \left(x - 3\right) \left(x - 2\right) A}{x \left(x - 3\right) \left(x - 2\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$3 x - 4=x \left(x - 3\right) C + x \left(x - 2\right) B + \left(x - 3\right) \left(x - 2\right) A$$
Expand the right-hand side:
$$3 x - 4=x^{2} A + x^{2} B + x^{2} C - 5 x A - 2 x B - 3 x C + 6 A$$
Collect up the like terms:
$$3 x - 4=x^{2} \left(A + B + C\right) + x \left(- 5 A - 2 B - 3 C\right) + 6 A$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B + C = 0\\- 5 A - 2 B - 3 C = 3\\6 A = -4 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=- \frac{2}{3}$$$, $$$B=\frac{5}{3}$$$, $$$C=-1$$$
Therefore,
$$\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}=\frac{- \frac{2}{3}}{x}+\frac{\frac{5}{3}}{x - 3}+\frac{-1}{x - 2}$$
Answer: $$$\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}=\frac{- \frac{2}{3}}{x}+\frac{\frac{5}{3}}{x - 3}+\frac{-1}{x - 2}$$$