Partial Fraction Decomposition Calculator
Find partial fractions step by step
This online calculator will find the partial fraction decomposition of the rational function, with steps shown.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{1}{t^{2} - 2}$$$
Factor the denominator: $$$\frac{1}{t^{2} - 2}=\frac{1}{\left(t - \sqrt{2}\right) \left(t + \sqrt{2}\right)}$$$
The form of the partial fraction decomposition is
$$\frac{1}{\left(t - \sqrt{2}\right) \left(t + \sqrt{2}\right)}=\frac{A}{t + \sqrt{2}}+\frac{B}{t - \sqrt{2}}$$
Write the right-hand side as a single fraction:
$$\frac{1}{\left(t - \sqrt{2}\right) \left(t + \sqrt{2}\right)}=\frac{\left(t - \sqrt{2}\right) A + \left(t + \sqrt{2}\right) B}{\left(t - \sqrt{2}\right) \left(t + \sqrt{2}\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$1=\left(t - \sqrt{2}\right) A + \left(t + \sqrt{2}\right) B$$
Expand the right-hand side:
$$1=t A + t B - \sqrt{2} A + \sqrt{2} B$$
Collect up the like terms:
$$1=t \left(A + B\right) - \sqrt{2} A + \sqrt{2} B$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B = 0\\- \sqrt{2} A + \sqrt{2} B = 1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=- \frac{\sqrt{2}}{4}$$$, $$$B=\frac{\sqrt{2}}{4}$$$
Therefore,
$$\frac{1}{\left(t - \sqrt{2}\right) \left(t + \sqrt{2}\right)}=\frac{- \frac{\sqrt{2}}{4}}{t + \sqrt{2}}+\frac{\frac{\sqrt{2}}{4}}{t - \sqrt{2}}$$
Answer: $$$\frac{1}{t^{2} - 2}=\frac{- \frac{\sqrt{2}}{4}}{t + \sqrt{2}}+\frac{\frac{\sqrt{2}}{4}}{t - \sqrt{2}}$$$