Partial Fraction Decomposition Calculator
Find partial fractions step by step
This online calculator will find the partial fraction decomposition of the rational function, with steps shown.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{1}{2 u^{2} - 1}$$$
Factor the denominator: $$$\frac{1}{2 u^{2} - 1}=\frac{1}{2 \left(u - \frac{\sqrt{2}}{2}\right) \left(u + \frac{\sqrt{2}}{2}\right)}$$$
The form of the partial fraction decomposition is
$$\frac{\frac{1}{2}}{\left(u - \frac{\sqrt{2}}{2}\right) \left(u + \frac{\sqrt{2}}{2}\right)}=\frac{A}{u + \frac{\sqrt{2}}{2}}+\frac{B}{u - \frac{\sqrt{2}}{2}}$$
Write the right-hand side as a single fraction:
$$\frac{\frac{1}{2}}{\left(u - \frac{\sqrt{2}}{2}\right) \left(u + \frac{\sqrt{2}}{2}\right)}=\frac{2 \left(\left(2 u - \sqrt{2}\right) A + \left(2 u + \sqrt{2}\right) B\right)}{\left(2 u - \sqrt{2}\right) \left(2 u + \sqrt{2}\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$\frac{1}{2}=2 \left(\left(2 u - \sqrt{2}\right) A + \left(2 u + \sqrt{2}\right) B\right)$$
Expand the right-hand side:
$$\frac{1}{2}=u A + u B - \frac{\sqrt{2} A}{2} + \frac{\sqrt{2} B}{2}$$
Collect up the like terms:
$$\frac{1}{2}=u \left(A + B\right) - \frac{\sqrt{2} A}{2} + \frac{\sqrt{2} B}{2}$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B = 0\\- \frac{\sqrt{2} A}{2} + \frac{\sqrt{2} B}{2} = \frac{1}{2} \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=- \frac{\sqrt{2}}{4}$$$, $$$B=\frac{\sqrt{2}}{4}$$$
Therefore,
$$\frac{\frac{1}{2}}{\left(u - \frac{\sqrt{2}}{2}\right) \left(u + \frac{\sqrt{2}}{2}\right)}=\frac{- \frac{\sqrt{2}}{2}}{2 u + \sqrt{2}}+\frac{\frac{\sqrt{2}}{2}}{2 u - \sqrt{2}}$$
Answer: $$$\frac{1}{2 u^{2} - 1}=\frac{- \frac{\sqrt{2}}{2}}{2 u + \sqrt{2}}+\frac{\frac{\sqrt{2}}{2}}{2 u - \sqrt{2}}$$$