Partial Fraction Decomposition Calculator
Find partial fractions step by step
This online calculator will find the partial fraction decomposition of the rational function, with steps shown.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{1}{1 - u^{2}}$$$
Simplify the expression: $$$\frac{1}{1 - u^{2}}=\frac{-1}{u^{2} - 1}$$$
Factor the denominator: $$$\frac{-1}{u^{2} - 1}=\frac{-1}{\left(u - 1\right) \left(u + 1\right)}$$$
The form of the partial fraction decomposition is
$$\frac{-1}{\left(u - 1\right) \left(u + 1\right)}=\frac{A}{u + 1}+\frac{B}{u - 1}$$
Write the right-hand side as a single fraction:
$$\frac{-1}{\left(u - 1\right) \left(u + 1\right)}=\frac{\left(u - 1\right) A + \left(u + 1\right) B}{\left(u - 1\right) \left(u + 1\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$-1=\left(u - 1\right) A + \left(u + 1\right) B$$
Expand the right-hand side:
$$-1=u A + u B - A + B$$
Collect up the like terms:
$$-1=u \left(A + B\right) - A + B$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B = 0\\- A + B = -1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=\frac{1}{2}$$$, $$$B=- \frac{1}{2}$$$
Therefore,
$$\frac{-1}{\left(u - 1\right) \left(u + 1\right)}=\frac{\frac{1}{2}}{u + 1}+\frac{- \frac{1}{2}}{u - 1}$$
Answer: $$$\frac{1}{1 - u^{2}}=\frac{\frac{1}{2}}{u + 1}+\frac{- \frac{1}{2}}{u - 1}$$$