Partial Fraction Decomposition Calculator
Find partial fractions step by step
This online calculator will find the partial fraction decomposition of the rational function, with steps shown.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{x + 2}{\left(x - 2\right) \left(x^{2} + 4\right)}$$$
The form of the partial fraction decomposition is
$$\frac{x + 2}{\left(x - 2\right) \left(x^{2} + 4\right)}=\frac{A}{x - 2}+\frac{B x + C}{x^{2} + 4}$$
Write the right-hand side as a single fraction:
$$\frac{x + 2}{\left(x - 2\right) \left(x^{2} + 4\right)}=\frac{\left(x - 2\right) \left(B x + C\right) + \left(x^{2} + 4\right) A}{\left(x - 2\right) \left(x^{2} + 4\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$x + 2=\left(x - 2\right) \left(B x + C\right) + \left(x^{2} + 4\right) A$$
Expand the right-hand side:
$$x + 2=x^{2} A + x^{2} B - 2 x B + x C + 4 A - 2 C$$
Collect up the like terms:
$$x + 2=x^{2} \left(A + B\right) + x \left(- 2 B + C\right) + 4 A - 2 C$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B = 0\\- 2 B + C = 1\\4 A - 2 C = 2 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=\frac{1}{2}$$$, $$$B=- \frac{1}{2}$$$, $$$C=0$$$
Therefore,
$$\frac{x + 2}{\left(x - 2\right) \left(x^{2} + 4\right)}=\frac{\frac{1}{2}}{x - 2}+\frac{- \frac{x}{2}}{x^{2} + 4}$$
Answer: $$$\frac{x + 2}{\left(x - 2\right) \left(x^{2} + 4\right)}=\frac{\frac{1}{2}}{x - 2}+\frac{- \frac{x}{2}}{x^{2} + 4}$$$