Partial Fraction Decomposition Calculator
Find partial fractions step by step
This online calculator will find the partial fraction decomposition of the rational function, with steps shown.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{x}{\left(x - 5\right) \left(x - 3\right)}$$$
The form of the partial fraction decomposition is
$$\frac{x}{\left(x - 5\right) \left(x - 3\right)}=\frac{A}{x - 5}+\frac{B}{x - 3}$$
Write the right-hand side as a single fraction:
$$\frac{x}{\left(x - 5\right) \left(x - 3\right)}=\frac{\left(x - 5\right) B + \left(x - 3\right) A}{\left(x - 5\right) \left(x - 3\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$x=\left(x - 5\right) B + \left(x - 3\right) A$$
Expand the right-hand side:
$$x=x A + x B - 3 A - 5 B$$
Collect up the like terms:
$$x=x \left(A + B\right) - 3 A - 5 B$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B = 1\\- 3 A - 5 B = 0 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=\frac{5}{2}$$$, $$$B=- \frac{3}{2}$$$
Therefore,
$$\frac{x}{\left(x - 5\right) \left(x - 3\right)}=\frac{\frac{5}{2}}{x - 5}+\frac{- \frac{3}{2}}{x - 3}$$
Answer: $$$\frac{x}{\left(x - 5\right) \left(x - 3\right)}=\frac{\frac{5}{2}}{x - 5}+\frac{- \frac{3}{2}}{x - 3}$$$