Partial Fraction Decomposition Calculator
Find partial fractions step by step
This online calculator will find the partial fraction decomposition of the rational function, with steps shown.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{7}{\left(x + 2\right) \left(2 x - 3\right)}$$$
The form of the partial fraction decomposition is
$$\frac{7}{\left(x + 2\right) \left(2 x - 3\right)}=\frac{A}{2 x - 3}+\frac{B}{x + 2}$$
Write the right-hand side as a single fraction:
$$\frac{7}{\left(x + 2\right) \left(2 x - 3\right)}=\frac{\left(x + 2\right) A + \left(2 x - 3\right) B}{\left(x + 2\right) \left(2 x - 3\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$7=\left(x + 2\right) A + \left(2 x - 3\right) B$$
Expand the right-hand side:
$$7=x A + 2 x B + 2 A - 3 B$$
Collect up the like terms:
$$7=x \left(A + 2 B\right) + 2 A - 3 B$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + 2 B = 0\\2 A - 3 B = 7 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=2$$$, $$$B=-1$$$
Therefore,
$$\frac{7}{\left(x + 2\right) \left(2 x - 3\right)}=\frac{2}{2 x - 3}+\frac{-1}{x + 2}$$
Answer: $$$\frac{7}{\left(x + 2\right) \left(2 x - 3\right)}=\frac{2}{2 x - 3}+\frac{-1}{x + 2}$$$