# Inverse Hyperbolic Tangent Calculator

The calculator will find the inverse hyperbolic tangent of the given value.

The inverse hyperbolic tangent $$$y=\tanh^{-1}(x)$$$ or $$$y=\operatorname{atanh}(x)$$$ or $$$y=\operatorname{arctanh}(x)$$$ is such a function that $$$\tanh(y)=x$$$.

It can be expressed in terms of elementary functions: $$$y=\tanh^{-1}(x)=\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$$$.

The domain of the inverse hyperbolic tangent is $$$(-1,1)$$$, the range is $$$(-\infty,\infty)$$$.

It is an odd function.

## Your Input

**Find $$$\operatorname{atanh}{\left(0 \right)}$$$.**

## Answer

**$$$\operatorname{atanh}{\left(0 \right)} = 0$$$A**

**For graph, see graphing calculator.**