# Inverse Cotangent Calculator

The calculator will find the inverse cotangent of the given value in radians and degrees.

The inverse cotangent $y=\cot^{-1}(x)$ or $y=\operatorname{acot}(x)$ or $y=\operatorname{arccot}(x)$ is such a function that $\cot(y)=x$.

The domain of the inverse cotangent is $(-\infty,\infty)$, the range is $(0,\pi)$.

It is an odd function.

There are two conventional but incompatible definitions for the inverse cotangent:

1. $\operatorname{acot}(x)=\frac{\pi}{2}-\operatorname{atan}(x)$
2. $\operatorname{acot}(x)=\operatorname{atan}\left(\frac{1}{x}\right)$

We use the first definition to make the inverse cotangent continuous at $x=0$.

Related calculator: Cotangent Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Find $\operatorname{acot}{\left(\frac{\sqrt{3}}{3} \right)}$.
$\operatorname{acot}{\left(\frac{\sqrt{3}}{3} \right)} = \frac{\pi}{3}\approx 1.047197551196598$A
$\operatorname{acot}{\left(\frac{\sqrt{3}}{3} \right)} = 60^0$A