Intercepts of $$$\left(x + 3\right)^{2} + \left(y + 5\right)^{2} = 36$$$
Your Input
Find find the x- and y-intercepts of $$$\left(x + 3\right)^{2} + \left(y + 5\right)^{2} = 36$$$.
Solution
To find the x-intercepts, substitute $$$y = 0$$$ into the equation and solve the resulting equation $$$\left(x + 3\right)^{2} + 25 = 36$$$ for $$$x$$$ (use the equation solver).
To find the y-intercepts, substitute $$$x = 0$$$ into the equation and solve the resulting equation $$$\left(y + 5\right)^{2} + 9 = 36$$$ for $$$y$$$ (use the equation solver).
Answer
x-intercepts: $$$\left(-3 + \sqrt{11}, 0\right)\approx \left(0.3166247903554, 0\right)$$$, $$$\left(- \sqrt{11} - 3, 0\right)\approx \left(-6.3166247903554, 0\right)$$$.
y-intercepts: $$$\left(0, -5 + 3 \sqrt{3}\right)\approx \left(0, 0.196152422706632\right)$$$, $$$\left(0, - 3 \sqrt{3} - 5\right)\approx \left(0, -10.196152422706632\right)$$$.
Graph: see the graphing calculator.